### Refine

#### Year of publication

- 2014 (5) (remove)

Geometric Programming is a useful tool with a wide range of applications in engineering. As in real-world problems input data is likely to be affected by uncertainty, Hsiung, Kim, and Boyd introduced robust geometric programming to include the uncertainty in the optimization process. They also developed a tractable approximation method to tackle this problem. Further, they pose the question whether there exists a tractable reformulation of their robust geometric programming model instead of only an approximation method. We give a negative answer to this question by showing that robust geometric programming is co-NP hard in its natural posynomial form.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

Minmax regret optimization aims at finding robust solutions that perform best in the worst-case, compared to the respective optimum objective value in each scenario. Even for simple uncertainty sets like boxes, most polynomially solvable optimization problems have strongly NP-hard minmax regret counterparts. Thus, heuristics with performance guarantees can potentially be of great value, but only few such guarantees exist.
A very easy but effective approximation technique is to compute the midpoint solution of the original optimization problem, which aims at optimizing the average regret, and also the average nominal objective. It is a well-known result that the regret of the midpoint solution is at most 2 times the optimal regret. Besides some academic instances showing that this bound is tight, most instances reveal a way better approximation ratio.
We introduce a new lower bound for the optimal value of the minmax regret problem. Using this lower bound we state an algorithm that gives an instance dependent performance guarantee of the midpoint solution for combinatorial problems that is at most 2. The computational complexity of the algorithm depends on the minmax regret problem under consideration; we show that the sharpened guarantee can be computed in strongly polynomial time for several classes of combinatorial optimization problems.
To illustrate the quality of the proposed bound, we use it within a branch and bound framework for the robust shortest path problem. In an experimental study comparing this approach with a bound from the literature, we find a considerable improvement in computation times.

We consider an uncertain traveling salesman problem, where distances between nodes are not known exactly, but may stem from an uncertainty set of possible scenarios. This uncertainty set is given as intervals with an additional bound on the number of distances that may deviate from their expected, nominal value.
A recoverable robust model is proposed, that allows a tour to change a bounded number of edges once a scenario becomes known. As the model contains an exponential number of constraints and variables, an iterative algorithm is proposed, in which tours and scenarios are computed alternately.
While this approach is able to find a provably optimal solution to the robust model, it also needs to solve increasingly complex subproblems. Therefore, we also consider heuristic solution procedures based on local search moves using a heuristic estimate of the actual objective function. In computational experiments, these approaches are compared.
Finally, an alternative recovery model is discussed, where a second-stage recovery tour is not required to visit all nodes of the graph. We show that the previously NP-hard evaluation of a fixed solution now becomes solvable in polynomial time.

The ordered weighted averaging objective (OWA) is an aggregate function over multiple optimization criteria which received increasing attention by the research community over the last decade. Different to the ordered weighted sum, weights are attached to ordered objective functions (i.e., a weight for the largest value, a weight for the second-largest value and so on). As this contains max-min or worst-case optimization as a special case, OWA can also be considered as an alternative approach to robust optimization.
For linear programs with OWA objective, compact reformulations exist, which result in extended linear programs. We present new such reformulation models with reduced size. A computational comparison indicates that these formulations improve solution times.